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Abstract

In recent papers the authors present and develop an original method for obtaining two-sided bounds of the exact eigenvalues. This idea
is based on the combination of nonconforming finite element methods giving lower bounds of eigenvalues and a postprocessing procedure
using conforming finite element spaces. Here a new approach is proposed, applicable to second- and fourth-order eigenvalue problems.
Namely, a conforming finite element method is used for eigenpairs approximation and then by means of nonconforming recovery interpolant
a lower bound approximation of the exact eigenvalues is obtained when the mesh parameter h > 0 is sufficiently small.

Some appropriate combinations of finite elements (conforming and nonconforming) which fulfil the algorithm are presented and
discussed. Numerical experiments illustrating the efficiency of the proposed method are also given.
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1. INTRODUCTION

Eigenvalue problems arise in many physical and
engineering applications. Because of the fact, that very few
of them can be solved exactly, the two-sided bounds of
eigenvalues is a very important tool in computation using
finite element method (FEM) especially. Nowadays, the
approaches for obtaining the eigenvalue approximations
simultaneously from above and from below use different
postprocessing procedures (see [1,2,3]).

In this paper, we define "nonconforming interpolations"
of conforming eigenfunction approximations. This
interpolation procedure gives lower bounds of eigenvalues.
So, we just have to solve essentially one discrete eigenvalue
problem.

The model eigenvalue problems are stated as follows:

—Au=du in Q, m=1;2,
u=0 on 00, €8
O,u=0 on 0L if m=2,

where (2 is a bounded polygonal domain in R’ with
boundary 0€2 .
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Let H°(£2) be the usual s-th order Sobolev space on

2 with a norm || : and seminorm | . |S’Q and (-,-)

"s,_Q
denote the L,(£2)— inner product.
The variational elliptic eigenvalue problems associated

with (1) are: find number A1eR and function ue Hj'((2),
m= 1,2 such that

a(u,v)=1(u,v), VVGVEH(;n(Q),
Jedly, o =2

)

where

a(u,v)= IVu -Vvdxdy Vuvel,
0
or

a(u,v)z_[Au Avdxdy VuveV,
0o

for second- or fourth-order problem, respectively.
One sees that (2) has an eigenvalue sequence (see [4]):

0</11S12 Sgﬂk <...,
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limk_)oo ﬂ“k =o00.

The associated eigenfunctions u; can be ortho-

J
normalyzed in L,(£2) and they constitute a Hilbert basis
for V.

2. FINITE ELEMENT METHOD
Let 7;, be a triangulation of £ which satisfies the usual
regularity conditions (see [5]), i.e. there exists a constant

o> 0 such that hy / pg <o, where hy is the diameter of

the element Ke 7, (rectangle or triangle) and p, being
the diameter of the largest circle contained in K. Then we
denote h=maxy ¢, hy .

Let V;, be the finite element space consisting of
piecewise polynomial functions of degree >2 defined on
Ty .

Then the approximation of the problem (2) is: find
Ay €R and function uy €V, , u, #0 such that

a(uh,vh)z/lh (uh,vh), Vvh GVh. (3)

We emphasize that V;, V' (conforming FEM). Let us

also introduce nonconforming finite element spaces Vh
related to the partitions 7,. For this purpose we define
mesh-dependent bilinear form

ap(u,v)= ZaK(u,v), u,vevl,

Ker,
where

aK(u,v):J.Vu -Vvdxdy or aK(u,v):IAu Avdxdy
K K
for second- or fourth-order problem, respectively. In case of

conforming FEM, obviously a(-,-) and a,(-,-) coincide.

Our algorithm applies the so-called "nonconforming
interpolation operator" 7, : V—>I7h such, that

ay(v=v, v, )=0, YveV, Vv, eV, &)

We specify a set of nonconforming finite elements with
integral-type degrees of freedom:

(A) For the second-order eigenvalue problems:

o Linear triangular elements of Crouzeix-Raviart (C-R)
[5];

o Bilinear rectangular elements of Rannacher-Turek

(Q1") [6];

o The extensions of the elements above (EC-R, EQ/")
[7.8].

(B) For the fourth-order eigenvalue problems:

o Triangular Morley element with degrees of freedom

35

_[8 vdl, where [; is the edge of any
!

va;)
g,

y

K e 7j, opposite of the vertex a;, j=1,2,3[9];
o The rectangular version of Morley element with
Py -3 )
[10], where P, denotes the set of all polynomials in two

polynomial set =P, +span{ X3 —3xy2 , y3

variables of degree less than or equal to 2.

Lemma 1. If Vh is constructed by any elements described
in (A) or (B) respectively, then the equality (4) is fulfilled.

Proof. First, we consider triangular (C-R and Morley) finite
elements for second- (m = I) and fourth-order (m = 2)
problem, respectively.

Then for any K e 7,

fvai = G (C-R)
lK ZK
§8vv dl= §6v(z~'hv)dl (Morley triangle),
lK lK
where 0, is the outer normal derivative and /g are the

edges of K.
Now, we adopt the following notations:
83 v=v; A v=vv.
Then, when v € V' and v, eV, we have
ap(v=iv,v)= Y. J‘Am*](v—zN’hv)Am*IVh dxdy, m=1;2.
Ker, K

Forany Ke 1y, \7;,|K is a polynomial from P,(K ).

Using the Green formula and At "\;hlk =const , it
follows
J.A”F] (v—a,v)Am*]Vh dxdy= §Am7]§h om! (v—lN'hv)dl
K oK
vth § 8 ( th dl=0.

Into the last relation we use that
poytvai=§oy iy,
oK oK

for m = 1 (C-R) and m = 2 (Morley triangle), respectively.

The next considerations involve the nonconforming

elements O/, EC-R and EQ/°', so that m = I and ¥,

consists of piecewise incompleted polynomials of degree
two.
Let T be the reference element, so

T={xy) eT:0<x<1,0<y<]-x}

if on T is defined the EC-R triangular element and
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T={xy) eT:0<xy <1}

if €2 is discretized by means of Q7" or EQ/ -elements.

. - 1
These elements are depicted in Fig. 1 and also x; =y =5

7

lg

(20, %0)

I3 [y

@ue. 1. The considered EC-R, Q;ot and EQ;’OI -elements

Since T is an incomplete quadratic element, for
V), €V, it can be written:

Vi (X, )=V, (X9, Y9 )+(X =% )0,V (X9, Y9 )

~ 1 ~
+H(y=y0)0,V (X0;y0)+5 (x=x0)° 00V (x9,79)  (5)

+é(y =¥0)7 83,9 (x99 ).

In addition

OxVi( %,y )=0,V(X9,¥0 )+(x =% )02V
O, Vp(x,¥)=0,V(X9,y9)+(y=p) 0y, V-

Case 1. EC-R-element
In this case 0V, =0, V), =const . Thus, we obtain:

[[o.av—v)o. 5, dxdy=[[,(Gv—v)0.5, (g, v Jaxdy
T T

+Hax(7hv—v)(x — X0 )0 1 Vy, dx dy
T

=0,V (x0.¥9) [I -|

Lo L

](rmdy

+0u | [ =] |(Bv—v)(x=xp)dy
ll 12

-0V If(?;,v—v)dxdy.
T

The first and the third term disappears and then
”ax (ﬁ,v—v)axﬁh dxdy=0,, v, J.(x—xo)(z;v—v)dy.

T 1
By analogy,

[[o,Gv-v)o, 5 dxdy=0,, %, [(y=yo)Gv-v)dx.
T i

Having in mind that 0, v, =0, Vj,, we get
HV@V - v) -V, dxdy=0.
T

Case 2. Q7" -element
Here, the presentation (5) is valid and besides

36

O xx Vjy=—0y,, Vj =const. (6)
We calculate

”6X<Thv—v)8xvh dx dy

T

=0,V (X9, 59) I —I (ﬁ,v—v)dy

Lo
w0y [ =] |(v=v)(x-x)dy
Lo
-0V, ”(Thv—v)dxdy.
T

Thus,

[[o.Gv—v)o. 5 dvdy=—[[(Gv—v) 0.7 dxdy.(7)
T T

Using the same arguments, it follows:
[Jo,Gv-v)a, 5, dvdy=—[[(Gv—v) 2,7 drdy. )
T T

Finally, from (6) we obtain

”V(Thv - v) Vv, dx dy=0.
T

Case 3. E let -element

The relation (5) is also fulfilled for any v, el7h as well
as (7) and (8). Then

”V(?;lv - v) Vv, dxdy=— ”(17,\/—\)) Avy, dx dy.

T T

But Avj, =const and the last integral is equal to zero
because of the condition

J.TJ.(Thv—v)dx dy=0.

For all three cases we make an affine transformation
from T to any element K € 7, and summarizing over all X,
we get the equality (4).

The Morley rectangular finite element case is
considered in [10] and in this case (4) is proved therein.

3. MAIN RESULT

In this section we present a new simple algorithm for
obtaining two-sided bounds of any exact eigenvalue A .

Let (A;,u;) be the eigenpair approximation obtained
by (3). We consider the nonconforming interpolation of the
function uy,, i.e. ju;, and define the number

i, :ahfhulzﬁuh)’ ©)

(ipttpiptiy )
where ||uh||0'g =1.
Theorem 1. Let (A;,u;,) be an approximate eigenpair of
the exact one (Au), ue H"?(Q)NV and
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[y, 2= lsnl. 2 =7

Suppose that the conforming finite element space V),
consists of piecewise polynomial functions of degree
n>m+1, m=1,2 and the corresponding space I7h
contains nonconforming elements considered in Lemma 1.
Then the number Zh determined by (9) ensures a lower
bound of the exact eigenvalue, i.e.

A, <A<y, (10)
Proof. The upper bound in (10) is obvious because the FEM

in (3) is conforming (see e.g. [4]).
Let us introduce the norms:

vl =atvs vey and |3, =a(si, 5. 5,2

First, we suppose that ( Ih»ﬁh ) is an approximate
eigenpair corresponding to (A,u) and obtained by
nonconforming FEM using elements described in (A) or
(B), respectively. In these cases, Zh approximates A from
below (see [1,3,10]).

We calculate:

ap(yuy =y, iy =y )= Ay (g, =i,y wy, 10y, )
=ay (i iy )= 2ap(yuy iy )+ ap(iiy, i)

= iy g Ty g )+ 2 2y, iy )= 2, (0, )

2

= (A, -7,)7 u,

0.0

So that, we obtain:

_ﬂ’h ih uh _ﬁh

~ ~ P ~ 2
ihuh—uh‘ ‘

> 0,02
ATy = % =3

2

Ipu
hZh HO,Q

This equality shows that Zh >Zh asymptotically,
because the function 7, u 5 U, is a piecewise polynomial

belonging to I7h .
Consequently, we have to estimate

<
ap

+
ap

lN'huh—ZN'hu Thu—ﬁh

i, u n =i,
n
The interpolation operator 7, -V —> I7h has a finite

range, i.e. dim range (?h ) <. Therefore it is compact.
Thus

v
|| h m,0

" 7h||:supvey WSC:const.
m, 02

It follows that

8 2 y
i, £C["uh—u"j+" B, j (11)
n

The space V), contains piecewise polynomial functions
of degree at leastn = m + I and

Ju—uy | =02+2) m=1:2

On the other hand 7, coincides with the elliptic

projection operator on I7h denoted by INQh and verifying
ay(Ryv, %, )=(v,%,), YveV, v, eV,
Indeed, from (4) (@ =const >0 :
a“ ?hv_ﬁhv”fn,h Sah(av—f?hv@lv—ﬁhv}

=ah(7hv—v,7hv—§hv):0,
where || : ||m 5 is the mesh-dependent m-th norm.

For the nonconforming finite elements (A), (B) under
consideration we have (see [1,10,12,13])

2
m+1"

2= =0( |-ty | )< 1 u] (12)

The elliptic operator ﬁh fulfils a superclose property

with the corresponding finite element eigenvector [11] (see
also [13]):

2
mizo (13

"Eu—uh ‘ﬁhu—uh ahSChZHLt"

-
ay
Thus from (11), using (13), we obtain
fiaws -7 |/ sca.
Consequently
Ay, =2, <Ch*.
This inequality and (12) give for 4 sufficiently small:
Ay, —2<0,
which proves (10).

So, we can propose the following

Algorithm

1. Solve the discrete eigenvalue problem (3) by means of
conforming FEM and find an eigenpair (ﬂh Jup, );

2. Construct a nonconforming interpolant of u;, using
convenable basis discussed in Lemma 1. It is preferable
to use integral type degrees of freedom in I7h such that

they take part in 7, , too;
3. Calculate Zh, ;j according to (9). Then

Ae[Ay, 2],
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4. NUMERICAL RESULTS

To illustrate the theoretical results we report in this
example on related second-order eigenvalue problem:

—Au=Au in Q,
u=0 on 002,
where Q2=(0,7)x(0,7).
For this problem the exact eigenvalues are
Aj=s]+53,5,=123,...

In Table 1 the results from numerical experiments for
the first four eigenvalues are given. Their exact values are
equal to 2, 5, 5, 8, respectively. The domain is uniformly

divided into 2n° isosceles triangles and thus the mesh
parameter is //n, n=4,8,12,16. The numerical results 4, ;

obtained by means of 6-node triangular elements and the
resulting numbers Zh, j after nonconforming C-R-

interpolation of the conforming FE solution are compared
with those obtained solving the eigenvalue problem with

nonconforming C-R elements Ih’ j=1234.
Table 1 illustrates that both eigenvalue sequences Zh, j

and 4, ; are increasing and the first sequence is greater

than the second one, which verifies the theoretical results.

Table 1. Eigenvalue approximations 7y, ; computed by
means of 6-node quadratic triangular conforming FEs,
values Zh,j obtained as a result of nonconforming C-R
interpolation of the conforming approximate FE solution

and eigenvalue approximations Ay, ; by means of

nonconforming C-R FEs

n j=1 j=2 j=3 j=+4
lh,j 2.0066781 | 5.0541368 | 5.1049165 | 8.3228101

4 Zh,j 1.9978343 | 4.9692132 | 4.9659029 | 7.9174807
Zh,j 1.9654755 | 4.5460329 | 4.5460365 | 7.4309499
lh,j 2.0004496 | 5.0040458 | 5.0074545 | 8.0266116

3 Zh ; 1.9998512 | 4.9979470 | 4.9972997 | 7.9916007
Zh,j 1.9914177 | 4.8881333 | 4.8881346 | 7.8689405
lh,j 2.0000902 | 5.0008288 | 5.0015185 | 8.0055801

12 Zh,j 1.9997004 | 4.9995861 | 4.9994428 | 7.9982068
Zh,j 1.9961894 | 4.9504042 | 4.9504053 | 7.9446002
lh,j 2.0000287 | 5.0002657 | 5.0004860 | 8.0018049

16 Zh,j 1.9999996 | 4.9999990 | 4.9999989 | 7.9997821
Zh,j 1.9978572 | 4.9721260 | 4.9721271 | 7.9710044

38

Regardless of the fact, that the second and the third
eigenvalues are equal, the proposed theoretical results are
valid for both of them.
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