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Abstract 

This paper presents a novel gyroscope-free method for measuring dynamic values that define oscillations in moving objects as related to 
the local vertical. The method is based on appropriate algorithm which utilizes signals from linear MEMS accelerometers interconnected in 
a differential way. High dynamic accuracy is obtained through real time processing of measuring signals by means of algorithm that has 
been developed as optimization criterion for the minimum of a mean quadratic error. Said algorithm is composed according to Kalman’s 
method and is intended to eliminate the impact of certain sources of interference each of which, individually, is of secondary importance 
though their cumulative action may cause a considerable distortion of the measuring signal. The method proposed eliminates the defects of 
conventional measuring devices used in this particular area, being based on one hand on substantially simplified mechanical module, and on 
the achievements in nanotechnologies, microprocessor and computer engineering on the other. In compliance with the fundamental 
principles of this method there has been developed a special-purpose measuring system designed to measure board and keel rolling, heeling 
and trim of a ship. Results from experimental investigations, carried out with specially designed test-stand equipment in shape of a hexapode 
and operating with six degrees of freedom, prove the efficiency of proposed measuring approach. 
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1. INTRODUCTION 
One of the main features distinguishing the development 

of measuring equipment today refers to the broader scope 
of application of the instruments and systems intended for 
measuring time-varying physical quantities. This is, to a 
great extent, due to the rapid development of the micro-
processor and computer equipment, as well as to their 
successful application in improving the measuring systems 
used in the area of dynamic measurements [1, 2]. However, 
to improve the accuracy characteristics of such systems, we 
need to work out new and/or to improve the existing 
measurement methods so as to minimize or eliminate the 
dynamic error in the measurement result. 

The development and improvement of the measuring 
equipment for determining the parameters of moving 
objects can be viewed from this perspective. For example, 
some of these parameters are the ones determining the 
position of the ship against the sea surface, such as heel, 
trim, etc. They are dynamic quantities. Therefore the 
efficiency of the ship steering depends on the accurate and 
the time data obtained from the ship's measuring systems in 
relation to the above parameters. 

 To ensure a specific orientation of the above moving 
objects and to control their motion, measuring instruments 
providing the required information must be mounted 
onboard. These instruments must include devices modeling 
the basic coordinate system [3, 4]. This allows us to 

determine the position of the moving object when rotating 
around its centre of mass, as well as when moving along 
with the latter. In addition, it enables us to keep the motion 
direction set. Therefore, part of the measuring instruments 
mounted on moving objects must possess properties that 
ensure continuous storage of particular directions connected 
with the Earth. 

One of those characteristics, which is mandatory for the 
orientation system of most moving objects, is the local 
vertical. There are different methods and tools for building 
and keeping the local vertical in measurement mode [5, 6]. 
The functional elements constituting the vertical play a 
secondary role in organizing the overall metrological 
structure of the measuring instruments. Hence they are 
considerably important when forming the qualitative 
characteristics of the measuring instruments and systems in 
this area. 

Measuring instruments built on the properties of the 
gyroscope are widely spread in metrology [7]. This is 
mainly due to the physical nature of the gyroscope that 
ensures its stability in relation to the inertial actions caused 
by the motion of the object. Therefore the dynamic 
accuracy of the measuring instruments built on this method 
is guaranteed by stabilizing the vertical in the inertial space. 
Under the conditions of dynamic actions these instruments 
provide relatively high accuracy, which reaches dynamic 
error values up to several tenths of a degree for the best 
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samples [5]. On the other hand, the measuring instruments 
built on the basis of gyro-verticals are distinguished for a 
number of disadvantages such as a sophisticated design, 
less reliability under extreme conditions, requirement of 
special systems ensuring the gyro-vertical operation; large 
sizes, high prices, etc. [6], thus limiting, to a great extent, 
their application. 

Current achievements in science and technology provide 
good perspectives for developing measuring instruments of 
new generation, that possess better qualitative features and 
metrological characteristics. The actual development and 
improvement of such measuring instruments is first and 
foremost based on the fast advancement of nanotechno-
logies [8], microprocessor and computer equipment.  

Therefore today new measuring systems whose im-
proved accuracy parameters in dynamic measurement mode 
are formed on the basis of new measurement concepts and 
signal processing algorithms can be implemented. On the 
basis of their improved characteristics, they can more 
effectively replace the current measuring instruments based 
on the gyroscopic principle of vertical stabilization. 

 
2. A concept of modeling measuring instruments 

The proposed measurement concept can be successfully 
used for modeling instruments that measure the angular 
position of moving objects in relation to the basic 
coordinate system, as well as their dynamic fluctuations 
around their instantaneous axis of rotation. It is designed 
for developing new measuring instruments in this area since 
it is based on a different approach targeting the elimination 
of the dynamic error caused by the deviation of the inertial 

components that model the vertical from the inertial space 
in real time rather than their stabilization. This modeling 
concept can overcome the disadvantages of the existing 
measuring instruments as it is based, on one hand, on a very 
simplified mechanical module, and on the other hand, on 
the possibilities of modern measuring equipment in the area 
of dynamic measurements. In addition, it is based on 
successfully integrated processing algorithms [8, 9, 10] 
intended for eliminating the dynamic error [9, 11]. 

The block diagram illustrating the operating principle of 
the measuring systems developed according to the concept 
of the present approach is shown in fig. 1 [1, 9]. In general 
it consists of a main measurement channel, an additional 
channel, interfaces to connect with a computer and 
programme modules for processing and presenting 
measurement information. 

The main channel is used for measuring the current 
values of the angles determining the position of the moving 
object in the basic coordinate system. It is based on the 
gyro-free principle of vertical modeling and a very 
simplified design, which results in considerably reducing 
the magnitude of the instrumental errors. 

However, this way of modeling the vertical leads to its 
instability in the inertial space. Under inertial actions 
caused by the motion and fluctuations of the object, this 
instability determines the deviation of the elements modeling 
the vertical from the actual direction of the vertical. All this 
results in a dynamic error which in some cases can reach 
inadmissible high values [12]. Therefore the proposed 
concept envisages a procedure eliminating the current 
values of the dynamic error from the measurement result. 
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Fig.1. Block diagram illustrating the principle of modeling of measuring systems 

 
The procedure related to the obtaining of the 

measurement information required for determining the 
current values of the dynamic error is implemented in the 
additional channel (fig.1). The latter operates in parallel 
with the main channel, which provides an opportunity to 
eliminate the dynamic error from the measurement result in 
real time. The structure of the additional channel and the 
type of devices constituting it are specified on the basis of 

the selected model for determining the current values of the 
dynamic error and the algorithm for correcting the signal 
from the main measurement channel. 

 
3. A measuring system for determining the heel and 
trim of a moving object  

To illustrate the characteristics of the proposed concept, 
a specific measuring system developed in compliance with 
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the principles of this concept is presented. The system is 
designed for measuring the roll, pitch, heel and trim of a 
ship. Its block diagram is shown in fig. 2 [1, 9]. 

 
The basic concept of the present measuring system is 

focused on the simplified design of the vertical in the form 
of a physical pendulum (fig.3). This comparatively simple 
design of the mechanical module, consisting of a small 
number of elements, results in limiting the magnitude of the 
instrumental error. The body 1 of the mechanical module is  
 

fixed to the ship. By means of an appropriate suspension 
system 2, a system for modeling the vertical 3 is mounted 
on the body. The latter consists of an outer frame 1 and 
inner frame 2, connected in series by cylindrical joints 
(fig.4). A physical pendulum of two degrees of freedom 3 is 
attached to the inner frame (fig.4). The two frames have 
interperpendicular axes of rotation, which intersect at one 
point. The measurement information about the heel and 
trim angles is obtained from identical absolute encoders 4 
and 5, mounted on the respective measurement axis. 
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Fig. 2. Block diagram of the measuring system 

 
The absolute encoders 4 and 5 used in the model are 

intended for transforming the angular displacements in 
coded electrical signals corresponding to the absolute 
position of the shaft. The application of differential parallel 
scanning of each division of the rotating scale in Gray code 
eliminates the errors due to interferences and provides a 
wide operating temperature range. The absolute encoders 
are distinguished for their high accuracy, high noise 
immunity, fast response, wide range of supply voltage and 
small size. 

 

13

2

 
 

Fig. 3. Design model of the main measurement channel 

 
The measurement accuracy in dynamic mode is ensured 

by an additional channel for determining the dynamic error. 
It consists of two pairs of identical MEMS accelerometers 
used for measuring the linear acceleration. The 
accelerometers are mounted respectively on the body of the 
mechanical module, on the first cylindrical joint (two 
accelerometers), and on the physical pendulum (fig.2). The 
first two accelerometers are mounted in such a way that 
their measurement axes are sensitive to the accelerations 
generated by the roll whereas the measurement axes of the 
other two accelerometers are sensitive to the accelerations 
generated by the pitch. This scheme of mounting of the 
MEMS sensors ensures the sensitivity of the first 
accelerometer of each sensor pair to all accelerations 
generated by the roll and the pitch. Every second 
accelerometer is sensitive not only to the accelerations of 
the first sensor but also to those generated by the pendulum 
motion in relation to its degree of freedom. This makes 
possible the development of a procedure involving the 
subtraction of the signals from the first and second 
accelerometer of each sensor pair where the output signals 
are proportional to the accelerations generated by the 
pendulum motion in relation to its degree of freedom. By 
means of a data processing algorithm a double integration 
of the accelerations is performed, where signals defining 
the pendulum deviations from the vertical in relation to its 
two degrees of freedom are obtained. 
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Fig. 4. System modeling the vertical of the device 
1 – outer frame; 2 – inner frame; 3 - physical pendulum;  

4 and 5 - absolute encoders of FKP 13.A type and  
213-bit resolution 

 
Usually the measuring instruments operating in similar 

mode are subjected to other interference actions whose 
sources are external or internal additional secondary 
processes of unpredictable behaviour. Hence it is necessary 
to introduce an additional procedure for protecting the 
measuring instrument against the presence of these 
interference sources. Taking into account the characteristics 
of the quantities constituting the measurement environment 
where the measuring instruments under consideration 
operate, it can be concluded that the best form of 
eliminating the influence of the interference sources is the 
Kalman filter. The characteristics of this algorithm fit very 
well into the solution of a number of problems emerging in  
 

the process of optimization of the accuracy characteristics 
of the measuring instruments defining the parameters of the 
above listed moving objects [8, 10, 13, 14, 17]. Therefore a 
module for signal processing by means of the Kalman 
algorithm is included in each measurement channel of the 
block diagram (fig.2).  

 
4. A mathematical model of the measuring system 

The dynamic characteristics of the instruments under 
consideration refer to their metrological characteristics as 
they affect the formation of the error obtained as a result of 
the measurement. The mathematical model presents the 
main ratios of the measuring system, the measured and the 
interfering quantities, in a form which is suitable for 
analytical study of the dynamic characteristics [9]. The 
model is developed on the basis of the block and the 
operating diagrams described above. The differential 
equations related to the motion of the instruments’ inertial 
components present the most complete description of the 
dynamic characteristics of the instruments. The equations 
are worked out for operating conditions close to the real 
ones. The latter are mainly defined by the ship's motion in 
real wind-generated rough seas. They represent a 
sophisticated dynamic process which can be considered as a 
set of deviations according to each degree of freedom.  

In order to make the mathematical operations easier, 
only one of the two measuring channels will be viewed - 
that related to the trim. In addition, the mathematical model 
of the accelerometer mounted on the cylindrical joint can be 
easily deduced from the equations of the second 
accelerometer positioned on the instrument pendulum, due 
to which it will not be taken into account when working out 
the differential equations. 
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Fig. 5. Diagram of the dynamic system moving object - measuring instrument 

 

1 – physical pendulum; 2 – first accelerometer; 3 – second accelerometer; Oo,η,ξ,ζ - supporting coordinate system; O,x,y,z – coordinate 
system connected to the ship; C,x1,y1,z1 – coordinate system connected to the physical pendulum; O,xp,yp,zp – intermediate coordinate system; 
ηо, ξо, ζо – coordinates of the position of the ship's centre of gravity in relation to the supporting coordinate system 
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The differential equations are worked out on the basis of 
a dynamic system shown in Fig. 5. The motions of a ship 
are defined as angular and linear fluctuations of a rigid 
body around or along with its centre of gravity. The moving 
object (the ship), to which the coordinate system O,x,y,z is 
connected, changes its position randomly in relation to the 
supporting system Оо,ξ,η,ζ. The measuring instrument is 
mounted on the ship and its sensor (the physical pendulum) 
is connected to the coordinate system Cx1y1z1. The 
suspension point О1 of the instrument's sensor coincides 
with the diametral plane of the ship and its position with 
regard to the centre of gravity of the moving object О is 
defined by the z and y coordinates. The position of the 
moving object in relation to the supporting system Оо,ξ,η,ζ  
is set by the three coordinates of its centre of gravity О - ξо, 
ηо, ζо and the matrix ijaA =  (i,j=1,2,3) of the given 

angle cosines of the trim ψ and the heel θ, defining the 
angular displacement between the axes of the systems 
Ооξηζ and Оxyz. The mechanical system consists of two 
bodies - a physical pendulum which is free to rotate with 
regard to the coordinate axes О1x1 and О1y1, and an 
accelerometer mounted in the centre of gravity С of the 
physical pendulum. The accelerometer's inertial body of a 
mass m2 stays at an equilibrium position in relation to the y1 
coordinate by means of two horizontal springs of an elastic 
constant с. 

Therefore, the mechanical system has three degrees of 
freedom and the generalized coordinates are, α, β and y1, 
respectively. The α and β coordinates define the angular 
displacement of the physical pendulum from the vertical in 
relation to О1y1 and О1x1 axes, respectively, whereas y1 
determines the relative motion of the inertial mass m2. By 
means of the β coordinate the inertial component of the 
dynamic error for the measuring channel under 
consideration is defined. The latter determines the trim 
values of a ship.  

 The Lagrangian method is used upon working out the 
differential equations. The kinetic energy of the system is 
the sum of the kinetic energies of two bodies. The first one 
is a physical pendulum of two degrees of freedom and the 
second is the moving mass of an accelerometer of one 
degree of freedom.  
 
(1)        Ek=Ek1+Ek2. (1) 
 

The kinetic energy of the first body is defined 
according to König's theorem related to rigid bodies, i.e.: 
 

(2)       2
C

2
С11k .J.

2
1V.m.

2
1E ωω+= , (2) 

 
where m1 – the mass of the first body;  

2
C

2
C

2
CС )]t([)]t([)]t([V ζξη  ++=  -  

the absolute velocity of the point С; JCω - the body's 
moment of inertia in relation to the current axis Сω through 
the body  
 
 
 

centre of mass; ω - the absolute velocity of the body. 
Since the C,x1,y1,z1 coordinate system is constantly 

connected to the physical pendulum, its inertial 
characteristics remain constant in time. In this case, the 
sensor's mass moments of inertia with regard to the 
coordinate axes of C,x1,y1,z1 remain constant. Then, for the 
second addend in (2), which defines the rotary motion of 
the sensor, the following is obtained:  
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where 

111 zyx J,J,J  are the sensor's mass moments of 
inertia in relation to the respective axes of the С,x1,y1,z1 
system; 

111111 zyzxyx J,J,J  are the centrifugal mass moments 
of inertia of the body with regard to the respective axes of 
the С,x1,y1,z1 system. 

The axes of Cx1y1z1 are assumed to be the principal axes 
of inertia of the body, i.e. 0JJJ

111111 zyzxyx === , by 
means of which the above expression is simplified to  

 

(4)        ( )2
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The projections of the angular velocity ω on the axes of 

the Cx1y1z1 system can be derived from fig. 3, and their 
final expression is: 

 
             αψβω cos.

1x  += ; 
(5)        

( ) ( ) ( )ψβαψψβαψβθω −+−+−= sin.sin.cos.cos.
1y  ;  

             
( ) ( ) ( )ψβαψψβαψβθω −−−+−= cos.sin.sin.sin.

1z  . 
The kinetic energy of the second body is equal to the 

sum of the kinetic energies of the two components of the 
absolute motion, i.e.:  

 

(6)        2
12

2
m22k y.m.

2
1V.m.

2
1E += ,  

 
where m2 – the mass of the inertial component of the 
accelerometer;   

2
m

2
m

2
mm )]t([)]t([)]t([V ζξη  ++= -  

the absolute velocity of the mass m2; 1y  - the relative 
velocity of the mass m2. 

 
After doing all necessary mathematical operations for 

the final definition of (2) and (6), and after substituting in 
(1), the following final formula for the kinetic energy of the 
dynamic system under study is obtained: 
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where q1, q2, …, q47 are the coefficients depending on the 
design parameters of the instrument's inertial components, 
on the angular quantities representing time functions and 
determining the position of the ship in relation to the water 
surface and the position of the pendulum with regard to the 
ideal vertical, as well as on the geometric parameters 
defining the position of the measuring instrument in 
relation to the ship's centre of gravity.  

The number of Lagrange's equations used for writing 
the differential equations are three as well, since the 
generalized co-ordinates α, β and y1, in relation to which 
some solutions of the model are sought, are three. After 
defining the generalized forces and substituting them in 
Lagrange's equations along with the derivatives of (7) in 
relation to the generalized coordinates and time, we obtain 
the differential equations of the dynamic system under 
study, whose matrix form could be written as follows:   
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where the elements of the separate matrixes are functions of 
the parameters defining the geometric and the mass inertial 
characteristics of the measuring instrument, as well as the 
quantities determining the position of the ship and the 
instrument's sensors with regard to their equilibrium 
position. 

The differential equations are formed under the 
influence of a great number of parameters which can be 

divided in the following groups, depending on the defining 
factors: parameters defining the characteristics of the sea 
roughness; parameters defining the shape, the dimensions, 
the geometric and the mass characteristics of the ship; 
parameters defining the position of the vessel in relation to 
the wave direction and kinematics parameters defining its 
motion; hydrodynamic parameters defining the interaction 
between the water and the ship; geometric and mass 
parameters defining the design of the instrument; as well as 
parameters defining its position with regard to the ship's 
centre of gravity. 

The mathematical model determined by equations (8) 
describes best the properties and characteristics of the 
measuring system because it expresses the interrelation 
between the system's readings and the values of the 
measured quantity, the design parameters and the 
influencing quantities. This model allows us to predict the 
measurement results when the system operates under 
different running conditions, as well as to optimize its 
design and parameters, thus subjecting their selection to the 
conditions that best realize a minimum error measurement.  

Equations (8) are reduced to simplified form by 
linearizing the quantities defining the movement of the 
system's points and by including only small first-order 
quantities. As a result, the following system of differential 
equations is obtained: 
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where kα, kβ and ky1 are damping coefficients according to 
the three generalized coordinates α, β and y1; l – the length 
of the physical pendulum. 

The third equation in (9) defines the link between the 
readings of the accelerometer mounted on the physical 
pendulum and the quantities entering the input of the 
instrument. A differential equation representing the motion 
of the sensor of the second accelerometer can be easily 
worked out from this equation, taking into account the 
identical design characteristics of the two sensors and the 
fact that this accelerometer is not sensitive to the motion of 
the physical pendulum. Then the differential equation will 
be: 
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(10)            ( )ψξ  .z.m
2
1y.cy.ky.m 02ppyp2 p

+−=++ , (10) 

where yp is the coordinate of the motion of the sensor of the 
second accelerometer.  

In this case the difference between the readings of the 
two accelerometers will be proportional to the function 

)t(β , by means of which we can easily determine the 
quantity β(t) defining the dynamic error.  

Actually, additional interferences are superimposed on 
the signal. They can be easily identified if equations (8) are 
set in a form where first- and second-order quantities are 
used, i.e.: 
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It can be seen in the third equation in (11),  that the 

functions βζ .o
  and βψ ..y   appear on the right hand side. 

They are superimposed on the signal )t(β . Although the 
values of these functions are formed as small quantities of 
second order in relation to )t(β , they introduce an 
additional error when determining the quantity β(t). 
Therefore, they have to be eliminated from the signal 
before the final formation of the function β(t). In this case, 
the use of Kalman filter is very suitable. Its position in the 
measuring procedure is given in the operating diagram 
shown in Fig. 2. 

 
5. EXPERIMENTS 

To carry out the experiments, the required stand 
equipment has been developed [1]. It is a hexapod of six 
degrees of freedom, which makes possible the reproduction 
of the fluctuations of the ship in a form close to the real 
operating conditions [15, 16, 18]. To ensure accuracy, the 
equipment is calibrated and metrological traceability of its 
unit to the length standard is provided.  The equipment is 
shown in fig. 6. 
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Fig. 6. Stand equipment 
1 – operating platform; 2 - actuators; 3 – immobile base; 4 – connection and control interface; 5 – computer 

 
Figure 7 illustrates the results from the investigation of 

the dynamic accuracy of the measuring system in its two 
operating modes [1]. Within the first operating mode a 
Kalman filter is not used. Unlike it within the second 
operating mode a module processing the measurement 
signals in compliance with the Kalman algorithm is used. 
The curves in fig. 7 show the dynamic errors for both 
operating modes in a graphic format. The errors, 

respectively without )t(deε  and with )t(kf
deε  a module 

using a Kalman filter, are determined by the expressions 
 

                            )t()t()t( mrde ψψε −= ; (12) 

                            )t()t()t( kf
mr

kf
de ψψε −= , (13) 

 

where )t(mrψ  and )t(kf
mrψ  are the functions obtained as  
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a result of the measurement of the platform motion, 
respectively without and with a Kalman filter; ψ(t) – the 
function defining the motion of the operating platform in 
relation to the trim coordinate. 

Errors )t(deε  and )t(kf
deε  are time functions since 

according to (12) and (13) both the measurement result and 
the referent quantity are dynamically changing processes. 
Function ψ(t) defining the referent motion of the operating 
platform along the trim coordinate is obtained as a result of 
the constitutive motions of the platform along its six 
degrees of freedom. The specific motion of the operating 
platform, upon measuring of which errors )t(deε  and 

)t(kf
deε  in fig .7 are determined, is shown in fig.8. 
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Fig. 7. Results from the investigation  
of the dynamic accuracy 
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Fig. 8. Motion of the operating platform along  
the angular coordinate ψ 

 
As it can be seen in fig.7 (the red curve), the measuring 

system is stable enough in relation to its dynamic accuracy 
even without using the Kalman algorithm. In this case the 
maximum values of the dynamic error are within a range of 
0,15° - 0,16°. The experiments show that even under the 
most severe conditions caused by the fluctuations of the 
ship the error does not exceed 0,2° - 0,3°. 

The Kalman algorithm considerably improves the 
dynamic accuracy of the measuring system, which is 
illustrated in fig. 7 (the blue curve). It can be seen that the 
maximum values of the dynamic error )t(kf

deε  vary within a 
range of 0,05° - 0,07°. 

 
6. CONCLUSIONS 

The proposed measurement concept is designed for 
developing gyro-free measuring systems that determine the 
parameters of moving objects. This modeling approach 
overcomes the disadvantages of the existing measuring 
instruments since it is based, on one hand, on a very 

simplified mechanical module, and on the other hand, on 
the advanced achievements in the area of nanotechnologies, 
microprocessor and computer equipment. 

The high dynamic accuracy of the proposed measuring 
system is ensured by an additional measurement channel 
operating in parallel with the main channel. The 
metrological procedures in the additional channel are based 
on an appropriate correction algorithm using signals from 
linear MEMS accelerometers. 

The experimental results confirm the effectiveness of 
the proposed measurement concept in relation to the 
dynamic accuracy of systems measuring moving objects. 
As a result of the operation of the additional channel and 
the Kalman algorithm the accuracy characteristics of the 
measuring system under conditions of dynamic influences 
are improved to a great extent. This can be implemented 
without using expensive elements and stabilization systems. 
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