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Unlike the Phase Locked Loops (PLL) based on the Time Recursive Processing, this paper 
describes one model of Frequency Locked Loop (FLL), which is based on the Time Nonrecursive 
Processing of the input periods. FLL represents linear discrete system, which is described by 
two difference equations. All analyzes in time domain are performed using Z transform 
approach. The analyzes in frequency domain are performed by matlab tools which are 
dedicated to design and application of digital filters. It was shown that FLL is very 
powerful in the tracking and predicting applications. In this paper, special attention was 
devoted to finding ways to use the powerful matlab tools in the analysis of FLL. The simulation of 
FLL functioning proofed the correctness of the mathematical analyzes.  The realization of FLL was 
described. The oscilloscope picture, made on the realized model, is presented.  
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INTRODUCTION 

Unlike the described algorithms in refs. [1-9], this 
approach of FLL is an open loop system. From the 
aspect of the algorithm used, based on difference 
equations, it functions similar as FIR digital filter. 
Although digital filters process amplitude samples of the 
input signal, and FLL use periods of  an input signal, it is 
very useful to understand the similarities and differences 
between these two physically different systems in order to 
utilize, as much as possible, power digital filter theory and 
matlab software tools in further development and 
application of FLL. FLL, described in this paper, calculate 
and generates an output period using the measurement and 
the processing of the input periods only. The term 
"nonrecursive" is borrowed from the theory of digital filters. 
Actually, finite impulse response (FIR) digital filters 
calculate a next output only using the input samples, 
without to take in account the previous filter outputs. Such 
processing was called "nonrecursive". Infinite impulse 
response (IIR) digital filters use in calculations both, the 
input samples and the previous outputs as well. This kind of 
the processing was called "recursive". All refs. [1-9], 
describing different applications, use recursive processing 
of the input and output periods. 

The theory and techniques for the developing of FLL 
are basically very similar to the demonstrated one through 
refs. [1-9]. The applicability of this approach is very wide. 
Frequency multiplier is described in [1]. Time shifters are 

described in [2, 3] and time/phase shifting in [4]. PLL and 
FLL for noise rejection are described in [5-7]. A wide range 
of tracking and prediction applications is described in [5, 6, 
8]. Most of the algorithms described in [1-9] are suitable for 
usage in a software form. Such a software predictor is 
described in [9]. The articles and books [10-15] are used as 
theoretical base, for electronics implementation and for the 
development necessities. 

DESCRIPTION OF FLL 

General case of an input signal Sin and an output signal 
Sop of FLL is shown in Fig. 1. The time difference k is 
used in Fig. 1 instead of the phase difference. The periods 
TIk and TOk, as well as the time difference k, occur at 
discrete times t0, t1, …tk, tk+1, which are defined by the falling 
edges of the pulses of Sop in Fig. 1. The main difference 
equation describing the functioning of FLL is presented 

 

Fig. 1. Time relation between variables 
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by eq. (1), where "a" and "b" are the system parameters. 
The natural relations between variables, which come out 
from Fig. 1, are given by eqs. (2) and (3). Note that eq. (3) 
is just eq. (2), shifted for one step. Eq. (3) will be 

2k kTO a TI b TI    1k

1

0

 (1) 

1k k k kTO TI       (2) 

2 1 1k k k kTO TI       (3) 

taken in account for the simulation of FLL. According to 
the equations (1) and (2), FLL has two output discrete 
variables, which describe the behaviour of FLL in terms of 
TIk. The output variables are TO(k+1) = f[TI(k)] and (k+1) 
= f[TI(k)]. To analyze the conditions under which the 
described system possesses the properties of FLL, the Z 
transforms of eqs. (1) and (2) are presented in eqs. (4) and 
(5) respectively, where TO1, TO0 and τ0 are the initial 
values of TOk and τk. Note that, according to eq. (1), 
TO1=bTI0. Substituting TO1=bTI0 into eq. (4), TO(z) was 
found and presented in eq. (6). Substituting TO(z) from eq. 
(6) into eq. (5), (z) was calculated and presented in eq. (7). 
Note that, in order to shorter the mathematical procedure, 
eq. (7) is reached taking in account that the relation 
between the system parameters must be a+b=1, shown later 
on, in eq. (12). Two transfer functions, which describe FLL, 
can be now recognized. The first one is HTO(z), shown in 
eq. (8), which describes the behaviour of the output period 
in terms of the input period. The second one H(z), shown 
in eq. (9), describes the behaviour of the time difference in 
terms of the input period. 
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ANALYSES OF FLL 

It is necessary now to investigate the conditions under 
which the described system possess the properties of FLL. 
Let us remember that a FLL generates the output pulse rate 
whose frequency tends to reach the frequency of the input 
pulse rate during the transient state. FLL is in the stable 
state when the output frequency becomes either equal or in 
certain pre-defined relation to the input frequency. 
FLL does not care about the phase difference between the 
input and the output signals. FLL regulates only the 
frequency of the output signal. The phase difference of FLL 
depends on the initial conditions and FLL parameters. 

Unlike FLL, PLL regulates both the frequency and the 
phase difference between the input and the output signals, 
at the same time. In most of the applications, classical PLL 
tends to equalize both frequency and phase of the input and 
the output signals. However, taking in account results in 
refs. [2, 3], the phase difference of Time Recursive PLL 
between the input and the output signals can be regulated 
by the system parameters. This phase difference can take 
any value, but it does not depend on the initial conditions of 
the variables. Generally, some of Time Recursive PLL can 
control the phase difference between the input and output 
signals by the system parameters. Note that thereby, the 
phase difference does not depend on the initial conditions. 
Otherwise, the system would represent FLL. 

The step analyzes is the most suitable approach for the 
investigation of the properties of the system described. Let 
us suppose that the step input is TI(k) = TI = constant. 
Substituting the Z transform of TI(k) i.e. TI(z) = TI·z/(z-1) 
into eq. (6) and using the final value theorem, it is possible 
to find the final value of the output period TO = lim TO(k) 
if k, using TO(z): 

1lim[( 1) ( )] ( )zTO z TO z TI a b    

0 0

 (10) 

Substituting now TI(z) = TI·z/(z-1) into eq. (7) and using 
the final value theorem, it is possible to find the final value 
of the time difference  = lim (k) if k, using (z): 

1lim[( 1) ( )] ( 2)zz z TI b TO          (11) 

It can be concluded, according to eq. (10), that the 
described system can possess the property of a FLL, if the 
system parameters satisfy eq. (12). Note that if eq. (12) is 
satisfied, TO=TI, i.e. for the stable FLL, the output 
frequency is equal to the input frequency. Equation (11) 
confirms that the system possesses the properties of FLL, 
since  depends on the initial conditions. It comes out that 
the system does not possess the property of a PLL.  

1a b   (12) 

It is of interest to analyze now, whether FLL is able to 
track the ramp input. To estimate this, it is necessary to 
determine well known velocity error KV, providing that the 
input period is the ramp function TI(k)=TIV(k)=c·k, where 
“c” is a time constant. Note that TI(z)=TIV(z)=Z(c·k)=cz/(z-
1)2. It is known, that velocity error KV = lim[TOV(k)-TIV(k)] 
for k→∞. One more suitable expression for velocity error is 
KV = lim TIV(k)[HTO(k)-1] for k→∞. Using the condition 
a+b=1, the final value theorem and HTO(z) given by eq. (8), 
KV is calculated and shown in eq. (13). According to eq. 
(13), FLL is able to track the velocity input with the 
constant error. However, if b=2 (a=1-b=-1), KV=0, i.e. FLL 
tracks the velocity input without any error.   

1lim{( 1) ( )[ ( ) 1]} ( 2)V V TO zK z TI z H z c b      (13) 

Let us now determine the behaviour of τV(k) for the 
velocity input, if k→∞. Taking in account b=2 and a=-1, 
and using the final value theorem, τV∞=lim τV(k)k→∞ is 
calculated using τV(z) and shown in eq. (14). The expression 
τV(z) is found out by the substitution of TI(z)=TIV(z)=cz/(z-
1)2 in eq. (7). According to eq. (14), τV∞ is the constant. 
Besides the initial conditions TO0 and τ0, τV∞ depends on 
the time constant "c", which is the slope of the ramp input 
function. 
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1 0lim[( 1) ( )]V V zz z c TO 0          (14) 

It is worth checking whether FLL is able to track the 
acceleration input function TI(k)=TIA(k)=c·k2. Note that, in 
this case, TI(z)=TIA(z)=Z(c·k2) = cz(z+1)/(z-1)3. It is 
necessary to calculate now the acceleration error 
KA=lim[TOA(k)-TIA(k)], for k→∞. One more suitable 
expression for velocity error is KA = lim TIA(k)[HTO(k)-1] 
for k→∞. Taking in account the values of parameters b=2 
and a=-1, than using the final value theorem and HTO(z) 
given by eq. (8), KA is calculated and shown in eq. (15). 
According to eq. (15), FLL is able to track the acceleration 
input, but with the constant time error KA = -2c. 

1lim{( 1) ( )[ ( ) 1]} 2A A TO zK z TI z H z      c  (15) 

The results of the step analyses will be supported by the 
simulation of FLL operations. This simulation are to prove 
the mathematical results and to enable better insight into the 
procedure and the physical meaning of the variables 
described. All discrete values in simulations were merged 
to form continuous curves. Note that all variables in the 
following diagrams were presented in time units. The time 
unit can be, sec, msec or any other, but assuming the same 
time units for TI, TO,  and „c“, it was more suitable to use 
just “time unit” or abbreviated “t.u” in the text. It was more 
convenient to omit the indication „t.u“ in diagrams. All 
simulations were performed using eqs. (1) , (2) and (3). The 
simulations of TO(k) and (k) for the step input TIk=10 t.u, 
are shown in Figure 4a. All values for three cases of 
different parameters „a“ and „b“, initial conditions and final 
values are shown in Figure 4a. The system parameters 
satisfy eq. (12) in all cases and consequently, the output 
periods reached the input periods. According to eq. (11), 
using the values of parameters and the initial conditions 
presented in Fig. 4a, it can be calculated 1∞ = TI(b-
2)+TO0+0 = 10(0.1-2)+3+0 = -16 t.u. This result agrees 
with the simulated 1∞, shown in Fig. 4a. In the same way, 
it can be calculated that 2∞ = -4 t.u, and 3∞ = 6 t.u. Note 
that the calculated values 2∞, and 3∞ also agree with the 
simulated 2∞, and 3∞ presented in Fig. 4a.  

 
Fig. 4 a. Transition states of FLL for the step input and different 
system parameters, b. Real time presentation of Sin, Sop and k 

for the simulated case Nr 2. 

These simulation results prove the correctness of the 
mathematical description and step analyses. The real time 
relation between Sin, Sop and k, for the simulated case Nr. 

2, is shown in Figure 4b. For the stable FLL, period TO∞ = 
TI = 10 t.u and ∞ = -4 t.u.  Note that FLL is very fast. It 
takes only two steps to reach the stable state. 
ANALYSIS IN FREQUENCY DOMAIN 

For the analysis of FLL in frequency domain, matlab 
commands, devoted to digital filter design, are used. Since 
FLL is described by two transfer functions HTO(z) and  
H(z), shown in eqs. 8 and 9, using matlab command 
"freqz", frequency responses in the regain (0, pi) [rad], from 
both transfer functions, are generated for the parameters a=-
1 and b=2 and presented in Figs. 5a and 5b respectively. 
The frequency responses consist of magnitude and phase 
responses. The sampling frequency fs=200 Hz corresponds 
to the whole region (0, 2pi) [rad], so that fs/2=100 Hz, 
covers the region (0, pi) [rad] in Fig. 5.  

For the comments about Fig. 5, time presentations of TI 
and TO as well as the spectrums of TI, TO and τ, shown in 
Fig. 6, will be used. The input signal is the input period TI, 
presented in Fig. 6a, as TI(k+1)=10+6·sin[(2pi/fs)·fm·k)]. In 
fact, this is the constant period of 10 t.u., which is 
modulated by samples of sinus signal, whose amplitude is 6 
t.u. and frequency fm = 10 Hz. Number of time steps is 
chosen to be k=200=fs. The angular sampling step is ws = 
2pi/200 [rad]. Since 200 frequency sampled steps covers 
region of one period, (0, 2pi) [rad], it means that every of 
10 periods of sinus signal will be sampled by 200 
samples/10 periods=20 samples/period. This provides 
sufficiently good resolution of TI in Fig. 6a for this 
analysis. FLL generates the output TO, which is calculated 
according to eqs. 1, 2 and 3. Note that TO exactly tracks TI 
with delay of one step, Fig. 6a. Matlab commands "fft" and 
"stem" are used for the generation of the spectrums of TI, 
TO and τ in Fig. 6b. 

 
Fig. 5 a. Frequency responses - HTO(z) 

b. Frequency responses - Hτ(z) 

These spectrums present the absolute values of 
amplitudes, covering the whole region (0, 2pi) [rad]. They 
appear as positive values in the symmetric second half (pi, 
2pi) [rad]. The constant of 10 t.u., as a part of the input 
signal TI(k+1), corresponds to zero frequency component. 
This constant appears as very strong amplitude with the 
frequency of 0 Hz in spectrums of TI and TO. Besides the 
constant of 10 t.u., TI(k+1) consist of the sinusoidal signal, 
whose frequency amplitude can be seen in spectrums of TI, 
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TO and τ at 10 Hz. Time amplitude of TO spectrum at 
frequency of 0 Hz is practically the same as in spectrum of 
TI, because FLL attenuation, shown in Fig. 5a for HTO, is 0 
[dB] at 0 Hz. 

 
Fig. 6 a. Time presentation of TI and TO, b. Spectrums of TI, TO 

and τ 

However the time amplitude at frequency of 10 Hz is 
slightly amplified at the output TO, because the magnitude, 
at Fig. 5a for HTO, is about 0.9 [dB]. According to Fig. 6b, 
the amplitude of the input sinus signal at 10 Hz is about 560 
t.u. and in the spectrum of τ, this component amounts about 
200 t.u. If we express this attenuation in [dB], it gives 20 
log(200/560) ~ -8.6 [dB]. This corresponds to the 
attenuation of -8.6 [dB], shown in Fig. 5b. Unlike very 
strong amplitude at the frequency of 0 Hz in the spectrum 
of TO, this component completely disappeared in the 
spectrum of τ in Fig. 6b, because FLL attenuation, shown in 
Fig. 5b for Hτ(z), is about 50 [dB] at 0 Hz. This fact means 
that the width of time difference τ contains the input sinus 
signal, but without zero frequency component. However, 
according to eq. (11), τ depends on the initial conditions 
too. But the difference between two adjacent τ, i.e. τk+1-τk, 
will eliminate the initial conditions, since their influence is 
the same in every τ, if FLL is in the stable state. It comes 
out that FLL can be used as a demodulator of the sinusoidal 
signal. 

REALIZATION OF FLL 

According to the previous analyzes, FLL possesses the 
powerful tracking performances for a=-1 and b=2. If we 
substitute these values of the parameters into eq. (1), it will 
be transformed into eq. (16). If we now multiply, at the 
same time, all of its members by clock frequency fc, eq. 
(16) will be transformed into eq. (17). The functional 
scheme of FLL, which comes out from eq. (17), is 
presented in Fig. 7. According to eq. (17), the input period 
TIk is measured by clock with frequency fc, the input 
period TIk+1 is measured by clock with frequency 2fc and 
the output period TOk+2 is generated by clock with 
frequency fc. FLL consists of Recursive Calculation Model 

(RCM) and Programmable Period Generator (PPG). RCM 
calculates Nb in binary form, according to the right side of 
eq. (17), and PPG generates the output period in the next 
step. PPG is described in refs. [2-4]. For the realization of 
RCM, presented in Fig. 2, the same technique was used as 
in refs. [1-9]. 

12 2   kkk TITITO  (16) 

12 2   kckckc TIfTIfTOf  (17) 

 

Fig. 7. The functional scheme of FLL. 

The real time functioning of FLL is presented in Fig. 8. 
The oscilloscope picture is made on the realized eight-bit 
FLL. The voltage waveforms in Fig. 8 are taken when FLL 
was in the stable state. For this purpose step input was 
chosen TI=0.1 ms (fin=1/TI=10 kHz), a=-1 and b=2. Clock 
frequency corresponding to parameter "a" was fc = 110 kHz. 
Clock frequency corresponding to parameter "b" was 2fc = 
220 kHz. The ratio TI/tc = fc/fin = 110 kHz/10 kHz = 11. 
This ratio can be noticed in Fig. 8. 

 

Fig. 8. The loop is in the stable state. 

CONCLUSION 

This paper is closely related to the recently published 
articles in ref. [1-9]. Due to the fact, that this FLL is based 
on the measurement and processing of the input periods 
only, it is simpler for the realization in comparison to those 
described in ref. [1-9]. At the same time, it takes FLL only 
two steps to reach the stable state for any kind of input. It 
was shown that this FLL can be very efficiently used for the 
tracking of the step, the ramp and the acceleration 
functions. It is especially suitable for those applications, 
which require fast FLL with very short transient time. This 
FLL is scalable to the very strict requirements in the fields 
of tracking and predicting.  

Although the FLL and the digital filter represent 
different types of systems, since the first is based on time 
processing and the other one is based on the processing of 
amplitudes, the article showed that matlab tools, devoted to 
the design of FIR digital filters, can be used to analyze the 
FLL in the frequency domain. All it takes is to understand 
the physical aspects of the whole process and to identify the 
meanings of FLL variables in matlab tools. Using matlab 
tools, wide options for new analyzes and new applications 
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of FLL are provided. Such one is described in this article. It 
was discovered that FLL can be used as a demodulator. 
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