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In this paper, we study the features and possibilities of dynamic graph models application to 
solve the problem of designing multivariable systems with compensation for a time delay influence. 
As one of the most important varieties of delayed systems, we consider the water object control 
systems. The use of classical methods for calculating controllers for such systems leads to significant 
difficulties and requires cumbersome transformations. Developed in this paper, the method of 
dynamic graph models is based on the premise that such systems should be considered from the point 
of view of discretization not only of signals but also of the system structure. This approach allows to 
synthesize the control laws according to the chosen optimality criteria and to take into account the 
characteristics and properties of real control objects as closely as possible. 
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INTRODUCTION 

Controlled processes of irrigation and hydro-power 
systems are described, generally, by partial differential 
equations that take into account such basic features of 
distributed processes as wave transfer of water flow, change 
of pure delay along canals, the influence of reflected waves 
on the dynamics of processes and so on [1–3]. The exact 
solutions of the equations have usually a complicated 
cumbersome kind as well as their application for analysis 
and synthesis of control systems comes across the 
considerable difficulties [4].  

That is why, in practice, is applied the approximation of 
transfer functions of the complex systems with the 
distributed parameters with the aid of lumped parameters 
systems transfer functions and equivalent constants of the 
pure time delay. The presence of delay, as it is well known, 
worsens the stability and the process dynamic properties 
[5–14]. In consequence one of the first priority tasks, 
arising, when water objects control systems designing, shall 
be the time delay negative impact compensation task.  

The other essential requirement comes as the transients 
time decrease, within the system or the task of maximum 
system response speed. The system parameters and control 
actions should be chosen so that the transient processes 
have aperiodic character, since overshooting may lead to 
idle discharges or shortage of water. 

An important factor is also the choice of the functioning 
law of the controllers. At small values of equivalent pure 
delay, controllers with a continuous control law can be 
used. The latter is the unacceptable for irrigation objects 
with the allocated to considerable distances sensors. In this 

regard, widely use systems with discrete operating mode 
[15–18]. In the article we consider the calculation technique 
of the specified systems digital controllers with the aid of 
dynamic graph models of processes [5, 19]. 

DYNAMIC GRAPH MODELS 

The fundamental feature of systems concerned is the 
natural decomposition (structure discretization) into sets of 
simple subsystems or structural states of Si. The dynamics 
and the character of structural states interaction shall be 
defined by the pulse elements operating modes, modulation 
types, nonlinearities class, etc [4]. 

Graphs with time-varying elements (sets of vertices, 
edges or their weights) are called dynamic 

Gt = < Xt (Vt, Ωt) >, (1) 

where Xt , Vt , Ωt - accordingly vertex set, edges and 
edges coefficients. 

),...,,(;:;:;: 21**** nttt tttttVtVXtX   

– linearly ordered finite set of time instants. 
There are different types of dynamic graphs. Structural 

state graphs describe a change in the system structure over 
time, while dynamic graph models of processes describe the 
direct dynamics of processes in individual structural states.  

The formal models at the level of structural states are 
the dynamic graphs, the analytical description of which has 
the form as below 

Si = ( Xi , Ri , Ωi ), (2) 

where 
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Si – the structural state of system, Xi – is the subset of 
system continuous part, match with the structural state Si , xj  
− the continuous system  coordinates, Ri – binary relation in 
set Xi, ωk – edge weight υk. 

Down level models, meant for the processes description 
within the individual subsystems, shall be set by the graphs 
as 

),,( tttt VXXG  , (3) 
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(  xx , «graph transmissions between the nodes 

(·,·)»;  ji xx ,  «edge weight (·,·)»; Т − discretization 

period). 

CONTROLLER DESIGN 

Consider the discrete control system shown in Figure 
1a. Block scheme of compensated system may be 
implemented with the aid of a sequential correction (Figure 
1b). The digital controller transfer function D(z) will be 
chosen on the basis of infinite degree of stability, i.e. the 
finite and minimum duration of the process. 

The latter, besides, shall have monotonous (aperiodic) 
type. Digital controllers we present as amplifying elements 
with the varying gain kj. Transient minimum time in the 
compensated system with the delay is equal to 

  ,min Tlt   (4) 

where l – is the degree of a differential equation of 

control object;  – is the relative time delay T
  ;   T – 

is the pulse element switch period. 
To obtain the system with the maximal response speed 

at piece-wise constant function inputs and zero initial 

conditions it is important, that, when  Tlt   the 

output remains less than the input and the system error 

when  Tlt  will be equal to zero. These restrains 

will be satisfied, if 







 






  TlfTly  , (5) 

       0... 1   TlyTlyTly l   . (6) 
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Fig. 1. Discrete control system with delay (a), sequential 
correction scheme (b), dynamic graph models of processes (c, d) 

To determine the gain values kj and digital controller 
transfer function D(z) we construct output process dynamic 
graph models and its derivatives. In the Figure 1(c,d) the 
latter have been constructed for the l-order system with 

delay T2 . The union sub-graph  111 ,ruG  with the 

vertices  

        Tly;T1lu,...,Tu,0uu1    (7) 

and mappings 
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sub-graph  222 r,uG  with the vertices 

        Tly;T1lu,...,Tu,0uu2     (9) 

and mappings 

    
    

    TlyT1lur

................................

TlyTur

Tly0ur

2

2

2

























 (10) 



Journal of the Technical University of Gabrovo 58 (2019) 47-52 49 

and sub-graph  1l1l1l r,uG   with the vertices 

         Tly;T1lu,...,Tu,0uu 1l
1l  
  (11) 

and mappings 
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allow to produce the fundamental system graph 
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and mappings 
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In the above expressions, symbol r1 denotes the 
mapping of each signal from the set of controls onto the 

output signal  Tly  , r2 is the mapping of each signal 

from the set of controls onto the derivative of output signal, 
and so on. 

The graph constructed for the case l=3, τ=2T has shown 
in the Figure 2a. Using the essential graph corresponding 
transformations (nodes exception, invert, summation and so 
on), we will obtain the control actions graph (Figure 2b), 
based on which immediately we will determine the control 
actions values desired.  
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Fig. 2. An essential graph of system (a), graph of controls (b) 

After, based on the dynamic graph model view (Figure 
1c), we will determine output process values at the 
moments of pulse element quantification, i.e. value 
       Tmly,...,T2y,Ty,0y  , where m is the integer. 

Piecewise-constant gain factors shall be determined 
directly by the graph, or by formula 

 
      .ml,...,2,1,0Jj,

jTyjTf

jTu
k j 





 (16) 

The required digital controller transfer function is found 
as the ratio of z-transforms of the control sequence and 
mismatch errors 

 
 

 
,
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j
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0j
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


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




  (17) 

where      jTyjTfjTe  . 

Obtained digital controller transfer function (17) ensures 
at the system output the aperiodic process of the finite and 
minimal duration, which differs from the process in the 
same system with no delay only by shifting by the delay 
time τ.  

As the system output coordinate can be taken the water 
level deviation in the channel from the specified one. In this 
case could be applied the dynamic graph models 
modification – state variables graph. 

Let the process initial state is characterized by 
vector 0)0( x


, i.e. water level deviation from a given 

one. As the system equilibrium we assume the origin of 
coordinates the process state space. It is required to transfer 
the object from an initial state )0(x


 to zero state with the 

minimal numbers of discreteness steps when the impact 
delay terms of compensation are observed. 

To find the control law we make use of the linear object 
properties, which consist in that, linear object of the l-th 

order with delay of pe  may be transferred from any 
initial state of )0(x


to the state of equilibrium in a time 

equal to   ,Tltmin  where 

.0)Tl(x


  (18) 

For the sake of simplicity assume, that, the relative 
delay time is equal to the whole number of m , then 
(18) is transformed to the form  

.0)Tml(x


  (19) 

Having constructed the state variables initial graph of 
concerned process and determined the transfers between the 
state variables, we expand the graph on the time interval 

)Tml;0(  (Figure 3b). 

We exclude the all intermediate vertices that match with 
the variables 

)T1ml(x...,),T2l(x),T1l(x 


. 

Taking into account that the system state up to the time 

mTt   is invariable, i.e.      ,0x...T1mxmTx


  we 

obtain the variable state essential graph (Figure 4a), directly 
from which, considering (19), one can write down: 
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Fig. 3. Control system with delay (a), graph of the system 
deployed on the time interval (mT; l + mT) (b) 

Transforming the graph (Figure 4a) so, as to obtain the 
transfers from the object initial state variables 

   0x,...,0x),0(x l21  to nodes      ,T1lu,...,T2u,Tu),0(u   

we get graph of controls shown in Figure 4b. 
Based on the form of the latter let us determine the 

optimal control law 

 
 

 
.
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 (21) 

The resulting sequence of control actions depends on 
system initial state of )0(x


. Coefficients 

})l,...,2,1{Kk},l,...,2,1{Ll(lk   are determined 

as a transformation result an essential graph into a graph of 

controls. Coefficients lk  could also be obtained out of the 

algebraic equations system (20). 
The control law in the current object states function may 

be obtained as follows. Invert the transmissions 

   Tmlx/mTx ji   and perform the corresponding 

transformations of the significant graph, finally will be 
obtained the initial state graph (Figure 5a), from where one 
can write down: 
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Fig. 4. An essential state variables graph (a),  
graph of controls (b) 

Let us solve this linear algebraic equations system, or, 
what is the same, transform the graph (Figure 5a) so, as, to 
express the first control action )0(u  via )0(x


.  

Be aware of the value )0(u  is enough, in order to 

transfer the object from the initial state )0()( xmTx


  to 

the next state ).1( Tmx 


 Accepting the received state 

)1( Tmx 


 as the new initial system state, let us repeat the 

task solution, i.e. according to the essential graph form for 

the interval );1( TmlTm   we determine the value of 

the second control action, and so on. 
With such approach the control law represents as the 

first formula out of the system (21), i.e. 

  )0(x...)0(x)0(x0u ll1212111   . (23) 

The control law (23) could be practically realized in the 
form of a feedback operator (Figure 5b): 

l
l11211 p...pB   . (24) 

Based on mentioned above, we will formulate an 
algorithm for the synthesis of a control system with delay 
and non-zero initial conditions: 

1. Construct the state variables graph of a system. 

Develop the graph on the interval )Tml;0(  , 

where m – relative delay equal to an integer; l – the 
order of the differential equation of a system. 

2. Exclude the intermediate nodes 

)T1ml(x...,),T2l(x),T1l(x 


 and obtain 

an essential graph (Figure 4a), directly from 
which, considering (19), we write down (20). 
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Fig. 5. State variables graph (a),  
synthesized scheme of the system (b) 

3. Transforming the graph (Figure 4a), we get graph 
of controls (Figure 4b), by the form of which we 
write out the control law (21). 

4. Invert the transmissions    Tmlx/mTx ji   and 

perform the corresponding transformations of the 
significant graph, finally will be obtained the initial 
state graph (Figure 5a), from where write down 
(22). 

5. To find the controls in the function of the current 
states of the object, we define the control actions 

)0(u  at the first step of the interrupt.  

6. Accepting the received state )T1m(x 


 as the new 

initial system state, let us repeat the task solution, 
i.e. according to the essential graph form for the 

interval )Tml;T1m(   we determine the value 

of the second control action, and so on. So continue 
until the process goes into zero state. 

7. The obtained control law we realize in the form of 
feedbacks by known methods. 

In the case of a multivariable discrete system, the 
calculation sequence does not change. Multivariable control 
systems are characterized by N-control actions and M-
output variables. The change of one control action causes a 
change in almost all output signals.  

Construct the state variables graph of a multivariable 

system. Develop the graph on the interval )Tmn;0(  , 

where m – relative delay equal to an integer; n – the nearest 
larger integer with respect to the quotient l / N (l is the order 
of the differential equation of system; N is the number of 
control actions or the "dimensionality" of system). Further, 
we act by analogy with the above algorithm. 

PRACTICAL EXAMPLE 

As an example, the formulated problem was solved for 
the Naiman hydro-technical Node control system (Figure 
6a), the block diagram of which is presented as the discrete 
system (Figure 6b). Pulse elements operate in synchronous-
in-phase mode with a period T = 900sec. The transfer 
function of a multivariable object is given in the form 
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The same delays in the separate transmission canals are 
due to the corresponding arrangement of measuring wells in 
each canal. 

It was required to find the controllers transfer functions, 
providing compensation of the delay influence, aperiodic 
nature of transient processes at the system outputs, and their 
finite and minimal duration. 

Applying the results of section 4 and relations (16), 
(17), we found the gain factors and impulse transfer 
functions of digital controllers  

.
z0684.0z817.0z1

z0288.00246.0
)z(D

;
z511.0z965.0z1

z0254.00348.0
)z(D

.0288.0k;0254.0k

;0246.0k;0348.0
)0(y)0(f

)0(u
k

321

1
2

321

1
1

2
1

1
1

2
011

1
1
0




























 
 

 
Fig. 6. Naiman hydro-technical Node (a), 

schematic representation of the Node control system (b) 

 

The numerical values of the output functions 21 y,y  are 

given in the table. Figure 7 shows the process curves 
obtained at the outputs of the system. 
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nT 0.5T T 1.5T 2T 2.5T 3T 3.5T 4T 

1y  0 0 0 0.0348 0.0615 0.489 1 1 

2y  0 0 0 0.182 0.612 0.932 1 1 

0H  0 0 0 -0.00038 -0.00051 0.0004 0.00087 0.00046 

 
 

 

Fig. 7. Output processes curves 

CONCLUSIONS 

Application of dynamic graphs method allows to easily 
coping with such control systems simulation complexity 
factor like delay. The presence of inertia and delay only 
simplifies the graph structure, since it is turned into an 
exception of the corresponding edges. The dynamic graph 
models allow to calculate system dynamics over the all 
coordinates of interest, to synthesize control laws according 
to the chosen optimality criteria (response speed, mismatch 
errors minimization, efficiency and others).To the purpose 
of illustration of approach suggested have been considered 
the Naiman hydro-technical Node control system. 

The approach can be applied to solve the problem of 
synthesis of discrete systems with variable frequency of 
interruption, with multiple synchronized and no 
synchronized interrupt frequencies, systems with pulse 
modulation in duration, frequency, systems with finite pulse 
duration, etc. 
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