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The calculation scheme, that allow to investigate dynamic processes of the manipulator of the 
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INTRODUCTION 

Ground-based robotic systems are designed to solve a 
number of problems, in particular to perform special 
operations in difficult road conditions. They can move at 
high speeds on uneven ground. A typical design of a 
ground-based robotic complex includes a manipulator 
consisting of rods of constant length connected by rotary 
units. Effective performance of special operations by means 
of the robotic complex is possible on condition of 
maintenance of high dynamic characteristics. A promising 
solution to this problem is the use of controlled damper 
devices in the manipulator. To build an effective control 
system, it is necessary to develop a dynamic model of the 
manipulator, which involves the use of controlled damping 
devices. 

EXPOSITION 

In the scientific work [1] the nature of dynamic loads 
acting on a mobile robotic complex is determined. In 
separate works the research of drives of ground robotic 
complexes [2], in particular drives of manipulators [3] is 
given. 

The rotary units of the manipulators are high-tech 
elements of the system and include an electric motor, a 
reducer and a bearing unit. Technical parameters of rotary 
units significantly affect the kinematic and dynamic 
characteristics of the manipulator. To some extent, the 
characteristics of the manipulator are determined by the 
deformation of the bars of constant length, due to the action 
of significant loads. 

This paper uses the concept of "deformation" movement 
of the manipulator. This concept implies small deviations of 
the manipulator levers from their nominal position [4]. 

Consider a typical manipulator in a terrestrial robotic 
complex with six degrees of freedom. One of the most 
ergonomic designs of the ground-based robotic complex 
contains two rods of considerable length and six rotary 
units that provide the appropriate number of degrees of 
freedom. When studying the working processes of the 
manipulator, taking into account the peculiarities of its 
design, we can consider a simplified problem, ie to reduce 
this mechanism to a scheme that includes two levers and 
three kinematic pairs that connect these links. With such a 
scheme, you can immediately proceed to the consideration 
of a flat problem. 

According to the proposed calculation scheme, the 
deviation of the levers of this manipulator leads to the 
movement of the hinges B and C of the manipulator of a 
typical design relative to the base of the ground robotic 
complex, including the hinge A (fig. 1). 

Dynamic movements of the manipulator occur due to 
the movement of the chassis, which leads to vertical 
movements zA of the hinge A of the manipulator and its 
transverse-angular movements at an angle θ. The 
manipulator is presented in the form of two masses mB and 
mC, which are concentrated in the hinges B and C. The 
levers of the manipulator are deformed, and the hinges of 
the rotary units correspond to their characteristic stiffness 
and coefficients of resistance. Controlled damping devices 
are installed in the hinge units, which create pulsed 
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dynamic loads R1 and R2, which are oriented at angles φ1, 
φ2 to the axes of the levers. 

 
Fig. 1. Dynamic model of "deformation" movement of the 

manipulator 

Let's make the equation of dynamic equilibrium of mass 
in the form of the sum of projections of forces on an axis of 
the lever of ВС: 

2222
c

2

c cos.RT
dt

d
m 

 , 

where  - the equivalent mass of the manipulator, optical 

devices and damper is concentrated at point C; 
cm

c  - 

moving the mass  in the direction of the axis of the lever 

ВС;  - force at the intersection of the lever;  - 

dynamic force action of the damper located at the end of the 
lever ВС; 

cm

2T 2R

2  - the angle between the axis of the lever ВС 

and the direction of action of the force . 2R

Transform this differential equation according to 
Laplace: 

222c
2

c cosRTSm   , (1) 

where  - Laplace operator; S c  - Laplace displacement 

image c ;  and 2R 22 cosR   - Laplace image of the force 

in the lever and the projection of the dynamic action of the 
damper on the axis of the lever ВС. 

From (1) we find the connection: 

22c
2

c2 cosRSmT   . (2) 

Effort in the intersection of the lever ВС defined as: 

  2
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where В  - mass movement  in the direction of the axis 

of the lever АВ;  - the nominal value of the angle 

between the axes of the levers АВ and ВС; ,  - 

equivalent stiffness and tensile strength of the lever ВС. 

Вm

2q

2с 2b

Transform the equation (3) according to Laplace: 

   SbSbccosq 2222   2СВ2 с.Т  . (4) 

Substitute the value of the force from (4) into the 
dependence (2), we obtain after the transformations: 

   2   222222с cosRSbcosqсSbSт 2ВС с.

В

 (5) 

From here we define  : 
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From equation (6) we determine: 
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We give the dependence (7) in the form of a block 
diagram (fig. 2). 

 
Fig. 2. Block diagram that establishes the relationship of 

longitudinal movements of the hinges B and C in the direction of 
the axes of the levers AB and BC 

Add the sum of the moments of the forces acting on the 
lever ВС relative to the point В: 

2222
с

2
2
2 sinLR-

dt

vd
L 2с Мт  , (8) 

where  - dynamic changes in the transverse angular 

position of the lever ВС;  - the moment of forces in the 

hinge with the drives located in a point В;  - lever length ВС. 

сv

2М

2L

Converted equation (8) according to Laplace: 

222с
22

2 sinRL-NSL 2с Мт  , (9) 

where  - Laplace transform of angular displacement v . сN 2

Moment of forces in the hinge В determined by the 
angular stiffness  and the coefficient of resistance  at 

transverse-angular movements of the lever ВС relative to 
the lever АВ. 

2r 2h

The moment is described by dependence: 

  2
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2сВ h
dt
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
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 М 2 , (10) 

where  - dynamic changes in the transverse angular 

position of the lever АВ. 
Вv

Converted equation (10) according to Laplace: 

   ShrNShrМ 22c222   ВN , (11) 

where  - Laplace transform of angular displacement v . ВN В

Uniting the equation (9) and (11): 

    22222B222c sinRLShrNrShSLm CN 22  (12) 
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 From equation (12) we establish the dependences 
between the Laplace images of the angular displacements 
of the levers: 
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Dependence (13) is given in the form of a block 
diagram (fig. 3). 

 
Fig. 3. Block diagram that establishes the relationship of 

transverse and angular movements of the levers: 
(moving the lever ВС) 

Defined the equation of dynamic equilibrium of 
equivalent mass . Bm

Composed the sum of the projections of the forces 
acting on the axis of the lever АВ: 

221112
B

2

B qcosTcosRT
dt

d
m  

, (15) 

where  - force at the intersection of the lever АВ;  - 

the dynamic action of the damper located at point B at the 
end of the lever AB; 

1T 1R

1  - the angle between the axis of the 

lever АВ and the direction of action of the force . 1R

Converted equation (15) according to Laplace: 

11221B
2

B cosRqcosTTSm    (16) 

The force at the intersection of the lever AB is 
determined by the formula: 
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B
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 , 

where  - moving the hinge А; Az   – chassis rotation 

angle;  - equivalent stiffness and drag coefficient of 

the lever AB and the hinges A and B during tension-
compression of the system in the direction of the axis of the 
lever AB;  - nominal angular position of the hinge  

relative to the chassis. 

1

1q

1 b,c

1L

Given that the transverse angular displacement of the 
chassis is negligible 1q  we will receive: 
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Converted equation (17) according to Laplace: 

   SbcSbcqsinZT 11B111A1   , (18) 

where  - Laplace image displacement . AZ Az

Let's substitute  from (18) to (16), and  from (2) in 

(16) and we will get: 
1T 2T

  11111A222

c
2
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2
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

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, (19) 

We give the dependence (19) in the form of a block 
diagram which is the output B  (fig. 4). 

From the condition of equality to zero of the sum of the 
moments of the forces acting on the lever AB relative to the 
point A we obtain the equation: 

212111212
B

2
2 vd
1B qsinLTsinLRMM

dt
L.m  

22

 (20) 

where  - dynamic changes in the transverse angular 

position of the lever АВ;  - the moment of forces in the 

hinge with the drives located in point A;  - lever length АВ. 
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Fig. 4. Block diagram for determining the movement of the hinge 

B in the direction of the axis of the lever 

Converted equation (20) according to Laplace: 

21211121B1B qsinLTsinRLMMN.SL.m    (21) 

The moment of forces in the hinge A is determined by 
the angular stiffness of the hinge r  and the coefficient of 

resistance  according to the dependence: 
1

1h
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1B1 h
dt
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dt

d
rvM 





 

 . 

Let's transform this dependence on Laplace and we will 
receive: 

   ShrNShrM 11B111    . (22) 

Substitute the value of the moment  from 

dependence (22) в (21), the value of the moment  from 

the formula (11) in (21), and the value of effort T  from 

the formula (2) in (21). We get after the transformations: 
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We give this equality in the form of a block diagram 
(fig. 5). 
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а    b 

Fig. 7. Block diagram for determining the force (a) and block 
diagram for determining the momentary load of the manipulator (b) 

Load torque of the arm to the chassis in the hinge A will 
be: 1A MM  . 

Fig. 5. The block diagram corresponds to the equilibrium 
conditions of the lever AB 

Using dependence (22) we define the structural scheme 
of moment loading (fig. 7b). 

The obtained equations and the corresponding block 
diagrams in closed form describe the dynamics of the 
elastic-dissipative system of the manipulator during its 
"deformation" motion. The inputs of the dynamic system of 
the manipulator are the vertical movement of the hinge A 

 and transverse-angular displacements of the chassis θ. 

Additional power inputs are the dynamic action of the 
dampers  and  and the angles of action of the forces 

created by the dampers 

Az

1R 2R

1  and 2 . 

Individual blocks-models are shown in fig. 2, 3, 4, 5, 6, 
7a, 7b are combined into one model structure. Additional 
blocks are introduced into the model in which the 
projections of the forces of each damper on the axis of the 
lever and the perpendicular axis are calculated. 

The stability of the computational procedure 
implemented in this model at different input parameters 
was checked. For this purpose transients at step change of 
position of the chassis are defined. From the analysis of the 
results of the calculation of transients it follows that the 
computational procedure works stably and the model can be 
used to calculate the parameters of the mechatronic control 
system of the damping devices of the manipulator of the 
ground robotic complex. 

The main output of the system is the vertical movement 
of the hinge C , in which the optical device is installed. 

Additional outputs of the dynamic system of the 
manipulator are the force acting from the manipulator on 
the chassis (its vertical projection ) and the reaction 

moment of the hinge МА. 

cz

AR

Determine the movement of the hinges of the 
manipulator. Vertical movement of the hinge В will be: 

CONCLUSION 

1B11BB qcos.vLqsinz   . (24) 

The proposed mathematical model of the "deformation" 
motion of the manipulator is characterized by the stability 
of the work and has its own outputs of movement of the 
hinge of the manipulator with optical devices installed on it. 
The manipulator model is combined with the existing 
mathematical model of the movement of the chassis with 
feedback and makes it possible to form the structure and 
select the parameters of the mechatronic system for 
stabilizing the position of the manipulator of the mobile 
ground-based robotic complex. 

The vertical movement of the hinge C will be: 

   12c212cBc qqcosvLqqsinzz   . (25) 

Uniting dependence (35) and (36) and a basic output 
models: 

 122c

12c11B1Bc

qqcosLv

)qqsin(qcosLvqsinzz



 
. (26) As a direction of further research, it is recommended to 

improve the control algorithm of the mechatronic system 
and experimental verification of the system of dynamic 
stabilization of the position of the optical devices of the 
mobile ground-based robotic complex. 

We transform this dependence according to Laplace and 
present it in the form of a block diagram (fig. 6). 

 

 
Fig. 6. Block diagram, which forms the total output of the system 
depending on the dynamic oscillations of the masses m  and  c Bm

Determine the additional outputs of the dynamic system 
of the manipulator. The vertical force on the chassis in the 
area of the hinge A will be determined by: 

11A qsinTR  . 

Using dependence (18) we define the force  by the 

structural scheme (fig. 7a). 
AR
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