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1. INTRODUCTION 

The phenomenon called chaotic synchronization was 
first discovered by Pecora and Carroll [1-3], who proved 
that two or more chaotic systems can synchronize their 
dynamics by means of a coupling signal between them. 
Chaotic systems are nonlinear systems that are usually 
described by simple differential equations. Their 
characteristic feature is their strong sensitivity to their 
initial conditions and to changes in some of their 
parameters, as a result of which their dynamics can change 
dramatically and from an initially steady state they can 
obtain a complex attractor in the state space in which there 
is a random factor. Such an attractor is called chaotic 
attractor. 

The synchronization of such systems has great potential 
and some real applications in various technical and other 
scientific fields. This is especially true for the fields of 
secure communications, data encryption, system 
identification etc. [4-10]. 

There are different types of chaotic synchronization, the 
most common of which is the identical chaotic 
synchronization [11-12], in which two or more chaotic 
systems are coupled in such a way as to perform identical 
chaotic movements. Other types of synchronization are less 
studied, such as the anti-synchronization of chaotic systems 
[13-14], in which the dynamics of the variables of one 
chaotic system is the same by module, but with the opposite 
sign, compared to the dynamics of the variables of the other 
system. By the so called hybrid synchronization [15-16], 
some of the respective variable pairs of the two chaotic 
systems to be synchronized are in identical synchronization 

mode, and the other variable pairs are in anti-
synchronization mode. In principle, the use of chaotic 
synchronization systems with more complex types of 
synchronization than the identical one gives greater 
opportunities for information protection in communication 
systems with chaotic data protection. 

Usually, a chaotic model, which has been previously 
studied and its characteristic features are well known, is 
chosen as the basis of a given synchronization system. The 
predominant part of the known continuous chaotic models 
are of the third order [17-18]. Continuous nonlinear systems 
of lower than third order cannot generate chaos. A much 
smaller number of known chaotic models are of the fourth 
order [19-20]. Chaotic models of higher than fourth order 
[21-22] are an insignificant percentage of the total number 
of known chaotic models. At the same time, such high-
order models have more complex dynamics, which is also 
of interest in view of the potential applications of chaotic 
synchronization schemes based on high-order chaotic 
models in the field of secure communications. 

This paper deals with a little-known model of a fifth-
order chaotic system described by Navier-Stokes equations. 
Based on this model, chaotic synchronization schemes with 
control functions, calculated using the second Lyapunov 
stability method, are realized, in which identical 
synchronization, anti-synchronization and hybrid 
synchronization are successively obtained. 

EXPOSITION 

When dealing with a specific hydrodynamic system 
presented in [23], an interesting mode of work has been 
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found in which the system has a strange attractor and, 
accordingly, chaotic behavior. A similar system is 
presented in [24]. For the purposes of the present work, it is 
not the physical nature of the system that is of interest, but 
the equations of its model itself, which will be considered 
as an abstract chaotic fifth-order generator. The equations 
of the model belong to the class of systems described by 
Navier-Stokes equations, and in dimensionless form they 
are: 
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where the nominal values of the system parameters are: 
, , , 2a1  4a2  4a3  9a4  , , 3a5  5a6  , 

, , . The parameter 7a7  5 a9 a8  3 r  is a 

bifurcation parameter, i.e. when it changes, the dynamics of 
the system change qualitatively. In [23] the equilibrium 
states of the nonlinear model (1) are studied, where the 
following has been found:  

1. For , where 1Rr0  2/35R1  , the system (1) 

has only one equilibrium point, which is stable and in fact 
is a global attractor of the system for values of r  in this 
range. The coordinates of this point are:  

5/rx,0xxxx 35421  . 

2. For , where 21 RrR  2/3)9/80(R2  , the 

system (1) has three equilibrium points, the first of which is 
the same as in the previous case 1., but is already unstable, 
and the other two points are stable.  

3. For , the system (1) has seven equilibrium 

points, the first three are those of the previous case 2, but 
are already unstable, and the other four equilibrium points 
are stable, but only for 

2Rr 

853.22Rr 3  . When 3Rr   

these points become unstable too and four periodic orbits 
are formed around them. As the value of the parameter r 
increases further, the number of orbits progressively 
doubles by a cascade of bifurcations until a transition to a 
chaotic state is reached. This is achieved for . 33r 

From the point of view of the problem of chaotic 
synchronization, the dynamics of the system for  is 
of interest. The system (1) is simulated in the Simulink 
simulation environment of the Matlab software product for 

 and the nominal values of the other parameters, 
given above. The initial conditions are 

 and are chosen 

randomly. The simulation shows type of dynamics which is 
typical for chaotic systems. Fig. 1 shows four three-
dimensional projections of the five-dimensional chaotic 
attractor in the subspaces of the state space, respectively 

, ,  and . 

The selected projections give an idea of the structure of the 
attractor of the system - a large number of closely spaced 
periodic orbits, which is the main feature of chaotic 
systems. The transition from one orbit to another is random. 
In Fig. 2 two of the many two-dimensional projections of 
the attractor are shown, respectively in the planes  

and . Two-dimensional projections can give a 

more detailed view of the location of the individual orbits 
of the attractor. Fig. 3 shows the time series of some of the 
state variables -  and . The dynamics of the 

other variables of the system is similar and in general it 
resembles the development over time of a random process. 
Therefore, only the time diagrams of the variables of a 
system cannot prove whether it is chaotic or stochastic. The 
selected simulation parameters are: simulation time 40 s, 
integration method ode4 (Runge-Kutta) and a fixed step 
with a size of 0.01 s. 
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Fig. 1. Projections of the five-dimensional attractor in different 
three-dimensional subspaces of the state space 
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Fig. 2. Selected two-dimensional projections of the chaotic 
attractor 
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Fig. 3. Time series of some of the state variables 

Let the system (1) be represented in the generalized 
form: 

 )t()t( xfx  , (2) 

where  is the state vector of the system, i.e. 5x

 T541 xxxx 32 xx , and the function  contains 

the right parts of (1). 

f
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The synthesis of a chaotic synchronization scheme 
requires a second instance of the same chaotic system (1), 
which can be written in the form:  
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where the state variables of the second system are denoted 
with 51i,x~i  , and )~,(gi xx  are control functions, 

which are subject to determination depending on the set 
goals. 

The pair of systems (1) - (3) will represent a chaotic 
synchronization scheme/system, if such control functions 

)~,(gi xx  are found that the systems (1) and (3) to be in the 

mode of identical, anti-, hybrid or other type of chaotic 
synchronization. A general rule for this type of tasks is that 
the two chaotic systems are identical ones, with the same 
set of parameters, but with different initial conditions. The 
nature of the coupling between the two chaotic systems is 
such that variables from the system (1) participate in the 
control functions to the system (3), but the variables from 
the system (3) do not participate in the equations of (1), i.e. 
the coupling is an one-way one. Then the system (1) is 
called a control or a master system, and the system (3) - a 
controlled or a slave system. Similar to (2), the equations of 
the slave system can be written in compact form: 

   )t( ~),t()t(~)t(~ xxgxfx  , (4) 

where 5~ x , т.е.:  T54321 x~x~x~x~x~~ x , and the 

vector g  contains the control functions to the slave system 

)~,(gi x x . 

The goal of chaotic synchronization tasks is to 
synthesize the functions )~,(gi xx  in such way that the 

following condition is fulfilled: 
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where  is the vector with the error functions between 
the different pairs of variables of the master and the slave 
systems, which in the case of identical synchronization 
between these systems has the form: 

ne

     t~tt xxe  , (6) 

and in the case of anti-synchronization is: 

     t~tt xxe  , (7) 

i.e. in the case of identical synchronization, when all 
functions 51i,x~xe iii 

51i,x

 settle to zero, the systems, 

for example (1) and (3), will perform identical chaotic 
movements, and in the case of anti-synchronization with 
the settlement to zero of the error functions 

~xe ii  i   the variables of one system will 

become the same by module, but with the opposite signs, of 
the variables of the other system. Hybrid synchronization 
is a kind of combination of error functions of the type (6) 
and (7), and it is chosen randomly which functions  to be 

in the form of differences between the respective pairs of 
variables and which - in the form of sums of the other pairs 
of variables of both systems. 

ie

The synthesis of the control functions )~,(gi xx  to the 

equations of the slave system is based on the principle of 
proving the stability of the point  taking into account 
the exact type of functions of this vector - (6), (7), or a 
combination for hybrid synchronization. The problem is 
solved on the basis of the fulfillment of the conditions for 
stability of a system by the second Lyapunov method, 
according to which, if a function  called Lyapunov 

function is found, which meets the following conditions:  
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0)(V e , 0e , (9) 

0
dt

)(dV


e
, 0e , (10) 

then the point 0e  will be stable, which is a sufficient 
condition for achieving the desired type of synchronization. 

Usually a quadratic function  is chosen for such 

tasks, and for the synchronization system (1) - (3) it will 
have the form: 
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The function (11) satisfies the conditions (8) and (9). 
The derivative of (11) is: 
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If the first derivatives of the error functions are in the 
form: 
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then the expression (12) will become:  
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which is a negatively determined function for 0ki   and 

thus the last condition (10) of the second Lyapunov stability 
method will be satisfied. 

In this case, the control functions )~,(gi xx  to the 

system (3) will be chosen in such way that the expressions 
(13) to be obtained after obtaining the equations of the error 
system. The type of the error functions - (6), (7) or a 
combination for hybrid synchronization must be taken into 
account. 

 
Case 1 – identical synchronization 
In this case, the error functions are in the form: 

51i,x~xe iii  , (15) 

and when differentiating the left and right parts of this 
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equation, for the derivatives of the error function holds the 
following expression:  

51i,x~xe iii   . (16) 

Obviously, the expressions (16) can be obtained by 
subtracting the corresponding equations of (3) from those 
of (1). The resulting system of equations is called the error 
system of the synchronization scheme: 
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In order to bring the error system (17) into the form (13) 
and to satisfy the condition (10), and taking into account the 
expressions (15), the control functions )~,(gi xx  are 

synthesized in the form: 
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where  must be positive constants for the expression (14) 

to be negatively defined. 
ik

The synchronization system (1) - (3) with the control 
functions for identical synchronization (18) is simulated 
with randomly selected initial conditions of the two 

systems, respectively  T11145)0( x

T
 and 

 5.03254)0(~ x

51i,x

. In Fig. 4 the functions 
~xe iii   for 51i,1ki 

ik

 are shown. It can 

be seen that after a transient process of 5s the systems (1) 
and (3) become identically synchronized. Changing the 
initial conditions does not affect the synchronization. When 
selecting larger values of the coefficients , the functions 

(15) tend faster to zero. 
A better idea of the nature of identical synchronization 

can be obtained if the time evolutions of the variables of 
systems (1) and (3) are observed together. For example, the 
joint time series of )t(x~),t(x 22  and )t(x~),t(x 44 are 

shown in Fig. 5. The two systems start from different initial 
conditions, but after the end of the transient process each 
variable from the system (3) performs identical movements 
to the corresponding variable from the system (1), and these 
movements remain chaotic. It is this property of chaotic 
synchronization that underlies the implementation of 

communication systems with chaotic information 
protection. 
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Fig. 4. Error functions (15) in the case of identical 

synchronization 
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Fig. 5. Joint dynamics of some pairs of state variables of the 

systems (1) and (3) by identical synchronization 

Case 2 – anti-synchronization 
In this case, the error functions are in the form: 

51i,x~xe iii  , (19) 

and their derivatives are: 

51i,x~xe iii   . (20) 

The expressions of the error system (20) will be 
obtained by adding the equations of the system (1) to the 
corresponding equations of the system (3): 
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In order to bring the system (17) into the form (13) and 
to satisfy the condition (10), and taking the expressions (19) 
into account, the control functions )~,(gi xx , are 

synthesized in the form: 
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where  must be positive constants again. ik

The synchronization system (1) - (3) with control 
functions for anti-synchronization (22) is simulated with the 
same initial conditions and values of  as in Case 1. Fig. 6 

shows two of the error functions (19) -  and , 

which confirm the existence of anti-synchronization, since 
this time the sums of the respective variables of (1) and (3) 
tend to zero. 

ik

)t(e1 )t(e5

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

t

e 1

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

t

e 5

 
Fig. 6. Some of the error functions (19) in the case of anti-

synchronization 

Fig. 7 shows the joint time series of the pairs 
)t(x~),t(x 33  and )t(x~),t(x 55  

which illustrate the essence 

of the anti-synchronization of chaotic systems - after the 
end of the transient process the given variable from the 
system (3) has a motion, which is symmetric with respect to 
the abscissa axis of the motion of the corresponding 
variable from the system (1). 
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Fig. 7. Joint dynamics of some pairs of variables of the systems 
(1)and (3) by anti-synchronization 

A good idea of the anti-synchronization phenomenon is 
also obtained from the three-dimensional projections of the 
chaotic attractors of the master and the slave systems. Fig. 8 
shows two of the three-dimensional projections of the five-
dimensional chaotic attractor in the subspaces of the state 
space  and . )x,x,x( 532 )x,x,x( 431
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Fig. 8. Projections of the attractors of the systems (1)and (3) in  

different subspaces of the state space in the case of anti-
synchronization 

Case 3 – hybrid synchronization 
In the identical synchronization case, the error functions 

are: 51i,x~xe iii  , and in the anti-synchronization 

case they are: 51i,x~x ii ei  . In hybrid 

synchronization case, some part of the error functions  

are chosen to be the differences, and the rest are chosen to 
be the sums of the respective pairs of variables of the two 
systems (1) and (3), i.e. many combinations are possible. 
Let the following combination of error functions for hybrid 
synchronization be selected: 

ie

.x~xe

x~xe

,x~xe

,x~xe

,x~xe
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444

333

222

111







, (23) 

The expressions for the derivatives of the functions (23) 
are similar. They are obtained after subtraction, respectively 
summation of the respective equations of the master system 
(1) and the slave system (3) according to the chosen type of 
error functions (23): 
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Then, in order to bring the error system for the selected 
case (24) in the form of (13) and to satisfy the condition 
(10), and taking into consideration the chosen type of error 
functions (23), the control functions )~,(gi xx  must be 

synthesized in the form: 
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 (25) 
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The hybrid synchronization obtained by applying the 
control functions (25) to the slave system (3) is illustrated 
in Fig. 9 with the projections of the five-dimensional state 
space in the subspaces  and . The 

first figure clearly shows the identical movement of the 
systems along the axes  and  and the symmetrical 

movement with respect to the axis , which is in 

accordance with the selected error functions (23). Similarly, 
in the second figure the motions of the systems (1) and (3) 
along the axes  and  are identical, and with respect to 

the axis  the motions are symmetrical, also in 

accordance with (23). 
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Fig. 9. Projections of the attractors of the systems (1) and (3) in 

different subspaces of the state space in the case of hybrid 
synchronization 

Fig. 10 shows the attractors of systems (1) and (3) in the 
projection  of the five-dimensional state space 

from different points of view. In accordance with the 
selected error functions (23), the movement of the two 
systems along the axis  is identical, and with respect to 

the axes  and - symmetrical. 
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Fig. 10. Projections of the attractors of the systems (1) and (3) in 
the subspace  in the case of hybrid synchronization )x,x,x( 432

All results presented in the article are obtained for the 
same values of the coefficients of the control functions . 

In additional experiments, it was found that these 
coefficients can be used to adjust the duration of the 
transient synchronization process. 

ik

CONCLUSION 

The article illustrates the possibility of obtaining 
complex types of chaotic synchronization between two 
chaotic systems of relatively high order. Unlike the chaotic 
third- and somewhat fourth-order models, very few chaotic 
systems of the fifth or higher order are known. At the same 
time, such systems have interesting and, above all, complex 
dynamics and their analysis is of practical interest in order 
to implement chaotic synchronization schemes that can be 
used in secure communications. 

The possibility for realization of synchronization 
schemes for the fifth-order model with different types of 

chaotic synchronization - identical, anti- and hybrid 
synchronization is shown. The classical method of 
Lyapunov stability analysis is used as a basis for the design 
of the control functions. The effectiveness of the 
synthesized functions is tested at the simulation level. The 
obtained results clearly illustrate the obtaining of the 
desired type of synchronization between the systems. In 
experiments with different initial conditions, it was found 
that the initial conditions did not affect the duration of the 
transient process or the type of synchronization. 

REFERENCES 
[1] Carroll T., Pecora L. Synchronizing chaotic circuits. IEEE 

Transactions on Circuits and Systems-I, 38 (4) (1991) 453-456 
[2] Pecora L., Carroll T. Synchronization in chaotic systems. 

Physical Review Letters, 64 (8) (1990) 821-824 
[3] Pecora L., Carroll T. Driving systems with chaotic signals. 

Physical Review A, 44 (4) (1991) 2374-2384 
[4] Mareca P., Bordel B. (A Chaotic Cryptographic Solution for 

Low-Range Wireless Communications in Industry 4.0. In 
World Conference on Information Systems and Technologies, 
Springer, Cham., April (2019) (134-144) 

[5] Cuomo K. et al. Synchronization of Lorenz-based chaotic 
circuits with applications to communications. IEEE 
Transactions on Circuits and Systems-II, 40 (10) (1993) 626-633 

[6] Zaher A., Abu-Rezq A. On the design of chaos-based secure 
communication systems, Communications in Nonlinear 
Science and Numerical Simulation, 16 (9) (2011) 3721-3737 

[7] Femat R. et al. A chaos-based communication scheme via 
robust asymptotic feedback. IEEE Transactions on Circuits 
and Systems-I, 48 (10) (2001) 1161-1169 

[8] Parlitz U. et al. Encoding messages using chaotic 
synchronization. Physical Review E, 53 (5) (1996) 4351-4361 

[9] Lagmiri S.N., Amghar M., Sbiti N., Hyperchaos based 
cryptography: New seven dimensional systems to secure 
Communications. Circulation in Computer Science, 2 (2) 
(2017) 20-30 

[10] Liu Qi et al. Optical image encryption using chaos-based 
compressed sensing and phase-shifting interference in 
fractional wavelet domain. Optical Review (2018) 25.1:46-55 

[11] Guemez J. et al. Approach to the chaotic synchronized state of 
some driving methods. Physical Review E, 55 (1) (1997) 124-134 

[12] Boccaletti S. et. al. The synchronization of chaotic systems. 
Physics Reports 366 (2002) 1-101 

[13] Kim C. et al. Anti-synchronization of chaotic oscillators. 
Physics Letters A 320 (2003) 39-46 

[14] Emadzadeh A., Haeri M. Anti-synchronization of two 
different chaotic systems via active control. World Academy 
of Science, Engineering and Technology, 6 (2005) 62-65 

[15] Vaidyanathan S. Hybrid synchronization of Liu and Lu 
chaotic systems via adaptive control. Int. J. of Advanced 
Information Technology, 1 (6) (2011) 13-32 

[16] Karthikeyan S., Vaidyanathan S. Hybrid chaos 
synchronization of four-scroll systems via active control. 
Journal of Electrical Engineering, 65 (2) (2014) 97-103 

[17] Zhou T., Chen G. Classification of chaos in 3-D autonomous 
quadratic systems – I. Basic framework and methods. Int. J. 
Bifuircation and Chaos 16 (9) (2006) 2459-2479 

[18] Sprott J., Some simple chaotic flows, Physical Review E, 50 
(2) (1994) 647-650 

[19] Vaidyanathan S., Azar A.T. Generalized projective 
synchronization of a novel hyperchaotic four-wing system via 
adaptive control method. In Advances in chaos theory and 
intelligent control (2016) 275-296 

[20] Rossler O., An equation for hyperchaos, Physics Letters, 71A 
(2,3) (1979) 155-157 



Chantov and Stoycheva/Journal of the Technical University of Gabrovo 64 (2022) 62-68 68  
[21] Arecchi F., Meucci R., Allaria E., Di Garbo A., Tsimring L., 

Delayed self-synchronization in homoclinic chaos, Physical 
Review E, 65 (2002) 1-4 

[22] Uchida A., Sato T., Ogawa T., Kannari F., Nonfeedback 
control of chaos in a microchip laser by internal frequency 
resonance, Physical Review E, 58 (6) (1998) 7249-7255 

[23] Panchev S., Chaos Theory, S., Prof. M.Drinov, 1996 
[24] Wang H. A five-mode system of the Navier-Stokes equations 

on a torus, Journal of Applied Mathematics and Physics 4 
(2016) 1245-1253 

 


